Current Issue

Administrated by

China Machinery Industry Federation

Sponsored by

Chinese Welding Society

Chinese Welding Society

Harbin Welding Institute

Display Method:      

In-situ strain measurement and error analysis of arc welding with 2D digital image correlation
Honghao Huang, Minghua Hu, Aijie Xu, Yuling Song, Huabin Chen
, Available online  
[Abstract](0) [FullText HTML](0) [PDF 2279KB](0)
The deformation and residual stress generated by the welding process can seriously affect the use of components. The strain measurement method based on digital image correlation (DIC) is an excellent method to detect welding strain and residual stress. The out-of-plane translation and out-of-plane rotation introduce errors to the two-dimensional DIC. The error caused by the out-of-plane translation can be reduced by increasing the object distance; the error caused by the out-of-plane rotation is greatly affected by the rotation angle.
Artificial-neural-network-based storage method for three-dimensional temperature field data during friction stir welding
Ce Han, , Qingyu Shi, Tianxiang Tang, Xin Liu, Gong Zhang, Gaoqiang Chen
, Available online  
[Abstract](9) [FullText HTML](4) [PDF 2252KB](1)
In this paper, a new storage method for the three-dimensional temperature field data based on artificial neural network (ANN)was proposed. A multilayer perceptron that takes the coordinate \begin{document}$ (x,y,z) $\end{document} as inputs and temperature \begin{document}$ T $\end{document} as output, is used to fit the three-dimensional welding temperature field. Effect of number of ANN layers and number of neurons on the fitting errors is investigated. It is found that the errors decrease with the number of hidden layers and neural numbers per layers generally. When the number of hidden layers increases from 1 to 6, the maximum temperature error decreases from 74.74℃ to less than 2℃. The three-dimensional temperature field data is obtained by finite element simulation, and the experimental verification is completed by comparing the simulation peak temperatures with the measured results. As an example, an ANN with 4 hidden layers and 12 neurons in each layer were applied to test the performance of the proposed method in storage of the three-dimensional temperature field data during friction stir welding. It is found that the average error between the temperature data stored in ANN and the original simulation data that stored point-by-point is 0.517 ℃, and the error on the maximum temperature is 0.193℃, while the occupied disk space is only 0.27% of that is required in the conventional point-by-point storage.
Geometric effects on competing failure modes in lap shear testing of spot joints
Telmasre Tushar, Abdelmotagaly Abdelrahman, Gao Yanfei, Yu Zhenzhen
, Available online  
[Abstract](12) [FullText HTML](7) [PDF 2366KB](0)
When subjected to the lap shear testing, spot welds created by brazing, resistance welding, or other techniques may fail either by a plug failure mode (also called pull-out mode) or an interfacial shear failure mode. In the past, plug failure mode was thought to be dependent on base metal ultimate tensile strength, spot diameter and plate thickness, while interfacial failure be determined by interface shear strength and spot area. No fracture mechanics model or failure process is invoked in such an approach, and its predictive capability is often doubted compared to realistic experiments. This work conducts a parametric study to assess the failure behavior as a function of dominant three-dimensional geometric parameters based on the Gurson-Tvergaard-Needleman (GTN) damage mechanics model and no-damage model respectively. Different necking conditions are considered as precursors to the two failure modes in the no-damage model. It is found out that a small ratio of spot diameter to plate thickness promotes interfacial shear failure while a large ratio favors plug failure. Other geometric parameters such as the filler interlayer thickness, if used, play a secondary role. The calculated peak force \begin{document}$ {F_{wt}} $\end{document} is not much different between the GTN and no-damage analyses, and better agreement is shown in the small nugget region. Normalized peak force calculated from the GTN model with the porosity \begin{document}$ {f_0} $\end{document} set to 0.01 showed the best agreement with pervious tensile shear tests on spot-welded DP980 lap joints in comparison to that calculated from the GTN model with \begin{document}$ {f_0} $\end{document} at 0.02 and the no-damage model. Note that heterogeneous distribution of material strength across the joint region was considered in the GTN model, which was estimated based on the hardness map measured across the joint cross section.
Approximate entropy analysis of arc stability in VPPA-GMAW hybrid welding
Haitao Hong, Yongquan Han, Yin Lu, Lu Wang, Yifan Wang
, Available online  
[Abstract](7) [FullText HTML](4) [PDF 807KB](0)
Variable polarity plasma arc-gas metal arc welding (VPPA-GMAW) integrates the advantages of VPPA and GMAW, and it is particularly applied to weld thick-plates aluminum alloys. High-speed camera and data acquisition system were used to analyze the arc shape and the welding process electrical signal. According to the analysis of arc swing amplitude and the approximate entropy of arc voltage signal denoised by wavelet threshold method, the influence of VPPA frequency on the arc stability was studied. The results show that the approximate entropy of GMAW arc voltage decreases with the increase of VPPA frequency in a certain range, and the stability of the hybrid arc is significantly improved. The spectral analysis shows that the arc stability is reduced due to the resonance effect between the VPPA and the GMAW arc when the VPPA frequency closes to the GMAW arc pulse frequency. The results are helpful to understand hybrid welding mechanism and the selection of welding process parameters.
Investigation on automated loading of dynamic 3D heat source model for welding simulation
Guangxu Hu, xingya Yang, Xingbin Yu, Yanhong Wei
, Available online  , doi: 10.12073/
[Abstract](187) [FullText HTML](65) [PDF 1700KB](11)
Since programing complex and dynamic heat source model for welding simulation is a complex job, the parametric methods are studied in this paper. Firstly, an overall flow to achieve automatically modeling welding was introduced. Secondly, an expert module rules for selecting welding heat source model was founded, which is based on simulation knowledge and experiences. Thirdly, a modularity routine method was investigated using writing with C++ programing, which automatically creates subroutines of 3D dynamic heat source model for user. To realize the dynamic weld path, the local weld path coordinate system was moved in the global coordinate system and it is used to model direction of weld gun, welding path and welding pose. The weld path data file was prepared by the automatic tool for the welding heat source subroutines. All above functions were integrated in the user interface and the connection with architecture was introduced. At last, a laser beam welding heat source modeling was automatically modeled and the weld pool geometry was compared with the reported literature. It demonstrated that the automated tool is valid for welding simulation. Since modeling became convenient for welding simulation using the tool proposed, it could be easily and useful for welding engineers to acquire the needed information.

Display Method:          |     

The study of arc behavior with different content of copper vapor in GTAW
Ding Fan, Xinglong Yao, Yingjie Hou, Jiankang Huang, Dequan Li
2022, 31(2): 1-14. doi: 10.12073/
[Abstract](106) [FullText HTML](56) [PDF 3933KB](19)
In order to understand the effects of different content of copper vapor entering the arc plasma on the arc behavior, the tungsten-copper materials with copper contents of 0%, 10%, 20% and 30% were made into special tungsten electrodes, which replaced the melting electrode to generate copper vapor. The effects of different content of copper vapor on the arc morphology, arc voltage, arc pressure, current density and arc axial temperature were studied. When copper vapor was transported into the arc plasma, the arc consisted of two parts: a high brightness arc core and the surrounding green luminous area. Through the observation and measurement of the stabilized arc, the results showed that as the content of copper vapor increased, the radius of the greenish region gradually increased, the brightness and size of the core area gradually decreased, the axial temperature of the arc gradually decreased and arc voltage gradually increased with a maximum difference of 1.5 V. This is because the increase of copper vapor concentration changes the net emission coefficient, resulting in a decrease in arc temperature and electrical conductivity. The distribution of arc pressure and current density showed unimodal distribution on the anode surface, and as the content of copper vapor increased, the distribution curves were gradually flattening. A factor contributing to this is that with the increase of copper vapor concentration, the current tends to flow through the edge of the electrode, which expands the conductive path and makes the arc disperse. And the coupling mathematical model of tungsten electrode and arc were established to further explain the experimental results.
Research on stretching flame correction technology of aluminum alloy ship frame skin welding structure
Yinhui Yuan, Lijun Nie, Hao Lu, Yang Yu, Dejun Yan
2022, 31(2): 15-22. doi: 10.12073/
[Abstract](193) [FullText HTML](80) [PDF 1788KB](15)
At present, conventional flame correction has shortcomings such as random heating route and low efficiency. The welding seam of the aluminum alloy ship frame skin structure is concentrated and the frame restraint is large. It is difficult to control and eliminate the local convex deformation after welding. In order to improve the conventional orthopedic technology and improve the orthopedic efficiency, the pre-elastic deformation technology is proposed. Using the method of combining numerical simulation and experiment, the orthopedic effect of conventional and pre-elastic orthopedic technology is studied, and the influence of pre-deformation variables and heating path on deformation control of the frame skin structure after welding is simulated. The simulation results show that the technical key to the control of convex deformation lies in the control of the pre-elastic deformation and the setting of the heating route. The experimental verification results show that the pre-elastic deformation technology has a better control effect than conventional orthopedics, can significantly improve the orthopedic efficiency, and provides a new method for deformation control in the shipbuilding industry.
Application of silver nanoparticles in electrically conductive adhesives with silver micro flakes
Hao Liu, Rui Ma, Dingwei Zhao, Zhiyuan Cui, Weiwei Zhang, Jianqiang Wang
2022, 31(2): 23-28. doi: 10.12073/
[Abstract](101) [FullText HTML](50) [PDF 2358KB](14)
This study has been conducted to evaluate the application of silver nanoparticles (NPs) in Electrically Conductive Adhesives (ECAs), filled with hybrid silver flakes and NPs, and silver flakes as a control sample, at a filler loading of 78 wt.%, 83 wt.% and 88 wt.% and cured at 150 ℃ and 180 ℃, respectively. The results show that the electrical and thermal conductivities of ECAs were improved with the increasing of filler loading and curing temperature. Adding silver NPs in silver flakes negatively affected the electrical and thermal conductivities of ECAs at a low filler mass fraction of 78 wt.%, because the segregation of NPs enlarged the average distance of silver flakes; while it positively influenced the electrical and thermal conductivities of ECAs at a loading ratio of 88 wt.%, probably due to NPs filling in the gaps between silver flakes or even sintering together with each other or with silver flakes, especially when curing at high temperature of 180 ℃.
Groove modeling and digital simulation for intersecting structures of circular tubes based on coplanarity of vectors
Changrong Chen, Sunsheng Zhou, Guofu Lian, Xu Huang, Meiyan Feng, Xianfeng Gao
2022, 31(2): 29-38. doi: 10.12073/
[Abstract](88) [FullText HTML](62) [PDF 3019KB](11)
In order to establish the groove model for intersecting structures of circular tubes, mathematical model of the intersecting line is established by the method of analytic geometry, and parametric equations are thus determined. The dihedral angle, groove angle and actual cutting angle for any position of the intersecting line are derived as well. In order to identify groove vectors for two pipes, a new analytical method, i.e. coplanarity of vectors, is further proposed to complete the groove model. The established model is virtually verified by programming and simulation calculation in the MATLAB environment. The results show that groove vectors of intersecting structures simulated by MATLAB are consistent with the theoretical groove model, indicating that the theoretical groove model established in this paper is accurate, and further proves that the proposed coplanarity of vectors for solving groove vectors is correct and feasible. Finally, a graphical user interface (GUI) is developed by MATLAB software to independently realize functions such as model drawing, variable calculation and data output. The research outcome provides a theoretical foundation for the actual welding of circular intersecting structures, and lays an essential basis for weld bead layout and path planning.
A novel single wire indirect arc metal inert gas welding process operated in streaming mode
Aiguo Liu, Jing Zhao
2022, 31(2): 39-44. doi: 10.12073/
[Abstract](95) [FullText HTML](46) [PDF 2446KB](11)
Dilution of a pad weld must be limited to a certain critical level to improve its wear and/or corrosion properties. To do that, a novel single wire indirect arc metal inert gas welding process operated in streaming mode was realized. A metal inert gas welding torch, arranged perpendicular to a substrate in vertical position, is fixed with an auxiliary tungsten electrode horizontally. The arc is ignited between a wire through the torch and the auxiliary electrode. The substrate is not electrically connected. The welding current is set in the range of streaming mode. 304 stainless steel was pad welded on Q235 substrates in vertical position by this process. Microstructures were analyzed with optical microscope. Dilution ratios were measured with stereo light microscope and calculated. The results show that, after eliminating interference of the massive torch setup, the dilution ratio of the pad weld with optimized parameters is 5.07%, much less than that with a metal inert gas welding process, which is 26.46%. The pad weld is bonded to the substrate without defects. Microstructures of the pad weld consist of columnar austenite and ferrite between the columns. The dilution ratio increases with increasing welding current or welding velocity, and decreases with increasing distance to the substrate.
A review of welding residual stress test methods
Shiming Gan, Huaying Liu, Zhiping Zhai, Yongquan Han
2022, 31(2): 45-55. doi: 10.12073/
[Abstract](51) [FullText HTML](34) [PDF 1337KB](17)
Due to local uneven heating during the welding process, the residual stress of the structure after welding affects the reliability of it. In order to ensure the reliability, it is of great significance to test the residual stress distribution of the welded joint. It has always been the focus to find a simple and feasible method for residual stress testing to quickly and accurately obtain the residual stress distribution of welded joints. The mechanical measurement method has high measurement accuracy, convenient and easy operation, but it will cause certain damage to the components. Physical measurement method can avoid damage to components, but its test cost is usually high, and its measurement accuracy can also be affected by the material microstructure characteristics of welded components. Based on the advantages and disadvantages of these two residual stress test methods, a modal test method is proposed. This method is a non-destructive measurement method. Based on the mathematical relationship between the residual stress of the welded structure and the natural frequency (mathematical model), the natural frequency is measured through the modal test to calculate the residual stress quickly. However, it is difficult to establish a mathematical model with this method, and it is not suitable for realization.
Ceramic-copper substrate technology introduction
Qingqing Zhao, Wentao Sun
2022, 31(2): 56-64. doi: 10.12073/
[Abstract](141) [FullText HTML](194) [PDF 2321KB](33)
Ceramic-copper substrate is used to achieve the combination between copper and ceramic (Al2O3 or AlN) under high temperatures by bonding or brazing process, then through dedicate lamination – etching technology to develop the designed layout in copper surface, finally parts go with plating and singulation process for surface treatment before shipping to the end-user. Ceramic-copper substrate has perfect performance in terms of insulation, thermal conductivity, solderability, and adhesion strength. Besides, the copper on surface can afford huge current due to the fact that ceramic has good reliability and thermal-cycling performance. According to technical visit and audit to suppliers’ manufacturing process and based on several years’ experience of mass production for electric vehicle power module package, this article introduces two mainstream ceramic-copper substrate processing methods currently on the market: direct bond copper (DBC) and active metal brazing (AMB) which can be widely used for the intelligent power module and electric vehicle power module, also introduces the major failure mode during application and analyzes the root cause for each failure mode, clarifies key incoming monitoring method, like crosshatch, silver plating thickness measurement and blister test. This article also clarifies the Incoming Quality Control system, which can provide guidance to process engineer during the application.
Study on the performance of silver paste sintered sealing joints for hermetic packaging
Liting Lin, Yongfei Zhang, Xin Li
2022, 31(1): 29-36.   doi: 10.12073/
[Abstract](286) [FullText HTML](136) [PDF 1107KB](11) [Cited Count](0)
Wear resistance of Zr/WC composite coatings on Cr12MoV steel surface by electric spark deposition
Yu Hua 1
2019, 28(1): 35-41.   doi: 10.12.073/
[Abstract](2421) [PDF 1615KB](1) [Cited Count](0)
Cold cracking susceptibility of X100 pipeline steel
Chunyan Yan, Xinyi Jiang, Yuan Yuan, Xiulin Ji, Kezhao Zhang
2019, 28(3): 25-33.   doi: 10.12073/
[Abstract](2063) [FullText HTML](614) [PDF 1294KB](21) [Cited Count](0)
Effect of laser remelting on microstructure and mechanical properties of CrMnFeCoNi high entropy alloy
Wei Guo, Yan Cai
2021, 30(2): 1-10.   doi: 10.12073/
[Abstract](329) [FullText HTML](95) [PDF 1775KB](10) [Cited Count](0)
Optimization of back bead geometry in the PMAG-TIG twin arc hybrid root welding process using grey based Taguchi method
Liu Liming, Zhou Yanbin, Shi Jipeng
2018, 27(1): 1-9.   doi: 10.12073/
[Abstract](2901) [PDF 1038KB](9) [Cited Count](0)
Effect of electrode morphology on steel/aluminum alloy joint
Zhang Yueying,Sun Daqian
2019, 28(1): 16-27.   doi: 10.12073/
[Abstract](2260) [PDF 1885KB](0) [Cited Count](0)
Study on numerical simulation of TA1-304 stainless steel explosive welding
Junxiang Qi, Guanghong Miao, Jiuying Ai, Yu Hu
2021, 30(2): 11-16.   doi: 10.12073/
[Abstract](273) [FullText HTML](77) [PDF 535KB](5) [Cited Count](0)
Research on stretching flame correction technology of aluminum alloy ship frame skin welding structure
Yinhui Yuan, Lijun Nie, Hao Lu, Yang Yu, Dejun Yan
2022, 31(2): 15-22.   doi: 10.12073/
[Abstract](193) [FullText HTML](80) [PDF 1788KB](15) [Cited Count](0)
Investigation on automated loading of dynamic 3D heat source model for welding simulation
Guangxu Hu, xingya Yang, Xingbin Yu, Yanhong Wei
2022, 31(${v.issue}): 1-5.   doi: 10.12073/
[Abstract](187) [FullText HTML](65) [PDF 1700KB](11) [Cited Count](0)
Simulating the residual deformation of thin-plate butt weldments without wire filling by contact mode
Jun Li, Shuwen Wen, Minjie Fang, Shuyan Zhang, Hao Lu
2021, 30(2): 42-49.   doi: 10.12073/
[Abstract](2055) [FullText HTML](611) [PDF 1308KB](26) [Cited Count](0)